Topic 5B - Phase Equilibria in One-Component Systems

Phase Changes

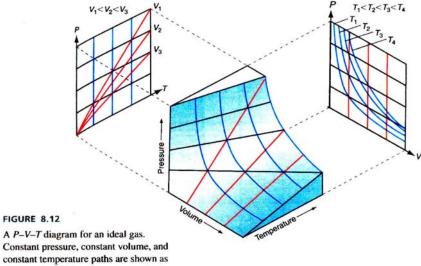
Freezing/Melting

Only slightly dependent on pressure. For most solids, increasing pressure causes only slight increase in $T_{\rm m.p.}$

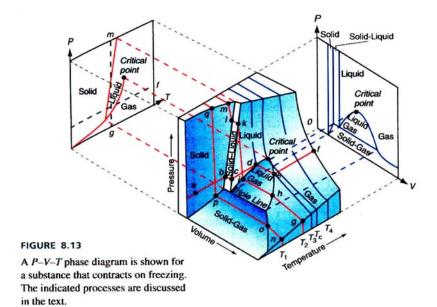
Exception exists for only a few compounds, such as H₂O, for which $\rho_{solid} < \rho_{liquid}$.

Boiling/Condensation

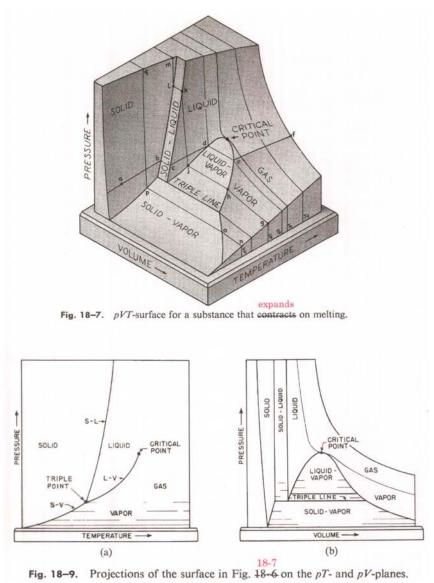
Boiling occurs throughout liquid, not just at surface.

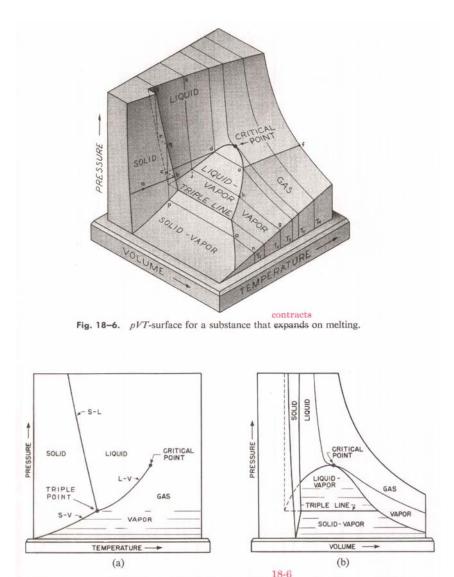

 $T_{b.p.}$ = Temperature at which $P_{v.p.}$ = 1 atm.

Phase Diagrams


Phase Boundaries (Equilibria)

 $\begin{array}{lll} \text{Solid-Vapor} & (P_{v.p.} \text{ of Solid}) \\ \text{Liquid-Vapor} & (P_{v.p.} \text{ of Liquid}) \\ \text{Solid-Liquid} & (\text{Dependence of } T_{m.p.} \text{ on P}) \\ \end{array}$


Triple point(s)
Critical properties


Constant pressure, constant volume, and constant temperature paths are shown as black, red, and blue curves, respectively.

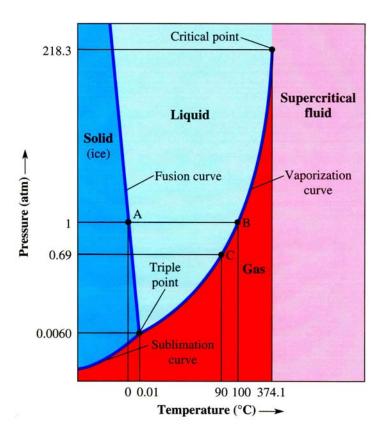
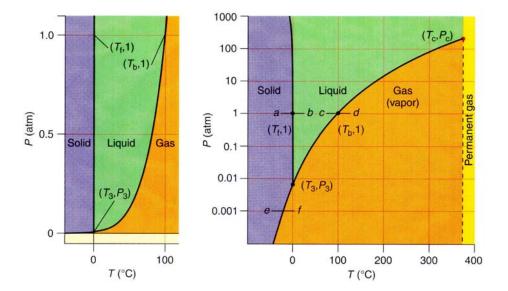
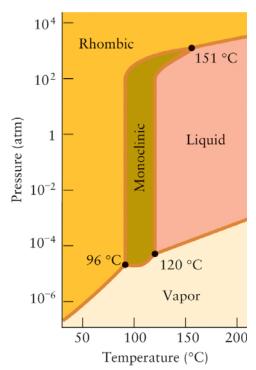
1/3/2017 4:48 PM 2 of 10

1/3/2017 4:48 PM 3 of 10

18-6

Fig. 18-10. Projections of the surface in Fig. 18-7 on the pT- and pV-planes.

Phase Diagram for Water

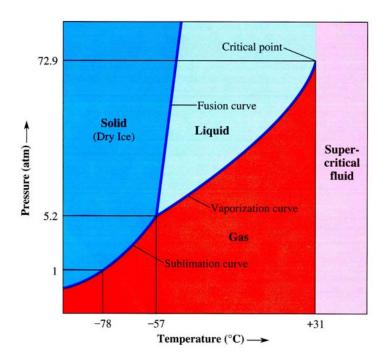

Figure 14.8: The Phase Diagram: Water

FIGURE 10.9 The phase diagram for sulfur. Notice that there are two solid phases and three triple points. The pressure scale, which is logarithmic, covers a very wide range of values.

Phase Diagram for Carbon Dioxide

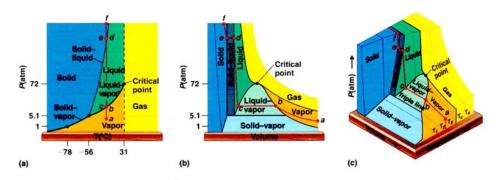
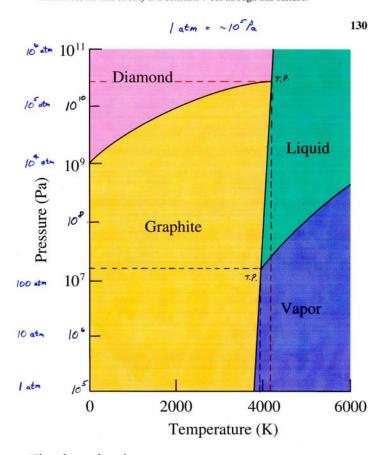



Figure 14.9

Phase diagrams for carbon dioxide (CO₂). Pressure and temperature scales are nonuniform, schematic only. (a) The normal P versus T phase diagram. CO2 is one of a small number of substances whose triple point lies above 1 atm; therefore CO2 does not display normal melting and boiling points, but only a single sublimation point at -78°C. In addition, its critical point occurs at the readily accessible temperature of 31°C. The line af depicts what happens when a CO₂ sample is compressed at constant T, where T lies between T_3 and T_c : first condensation (point bc) and then freezing (point de). Freezing occurs because solid CO2 (dry ice) is denser than liquid CO2, making the liquid-solid equilibrium line slope to the right; freezing does not occur for H_2O under these conditions. (b) P versus V phase diagram for CO2; each phase equilibrium point on the P-T diagram becomes a horizontal line on P versus V, due to the change in $V(\Delta V)$ that accompanies a phase change, as illustrated by the path abcdef of (a). The phase transitions bc and de are shown by the heavier lines. The phase boundaries then "fold over" to produce equilibrium areas instead of lines; that for liquid-vapor has a maximum at the critical point. Away from the phase equilibrium curves, constant T defines an isotherm, which becomes that for an ideal gas (a graph of Boyle's law) as T increases beyond T_c. (c) If the features of (a) and (b) are combined, we obtain a phase surface P(V,T) that summarizes all aspects of phase behavior for a pure substance; the line abcdef is a constant-T cut through this surface.

Phase diagram for carbon

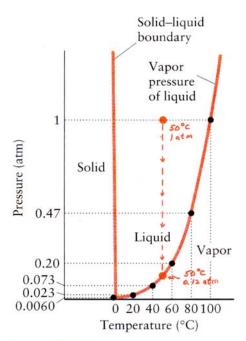
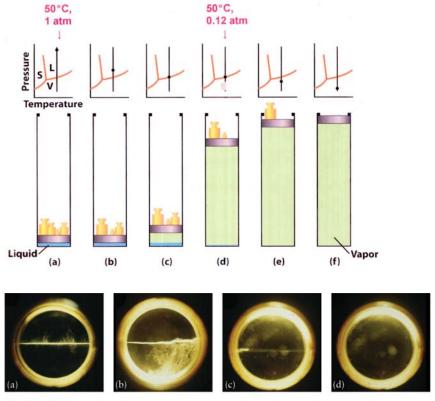



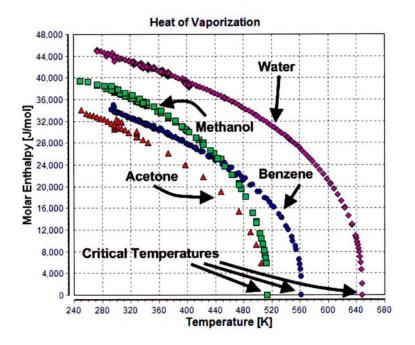
FIGURE 9.10 The liquid–vapor boundary curve is a plot of the vapor pressure of the liquid (in this case, water) as a function of temperature. The liquid and its vapor are in equilibrium at each point on the curve. At each point on the solid–liquid boundary curve (for which the slope is slightly exaggerated), the solid and liquid are in equilibrium.

FIGURE 10.14 (a) At low temperatures the liquid and vapor phases of a substance in a sealed, constant-volume container are distinct. (b) As the temperature is raised, more of the liquid vaporizes; the density of the liquid decreases while the density of the vapor increases. (c) Near the critical temperature, T_c , the phases are less distinct, as they have nearly the same density. (d) At and above the critical temperature a single uniform phase, a supercritical fluid, fills the container.

Liquid and gas densities of <u>water</u> at temperatures and pressures near ambient conditions and at critical conditions:

At 1 atm and 0°C:

Density of Liquid H₂O = 1 g/mL = 55.6 mol/L


Density of Gaseous $H_2O = 2.7 \times 10^{-4} \text{ mol/L}$

At 218 atm and 374°C (critical conditions):

Density of Liquid = Density of Gas = 4.1 mol/L

TABLE 10.4 Critical Temperatures and Pressures of Selected Substances								
Substance	Critical temperature (°C)	Critical pressure (atm)						
Не	-268 (5.2 K)	2.3						
Ne	-229	27						
Ar	-123	48						
Kr	-64	54						
Xe	17	58						
H_2	-240	13						
O_2	-118	50						
H_2O	374	218						
N_2	-147	34						
NH_3	132	111						
CO_2	31	73						
CH ₄	-83	46						
C_6H_6	289	49						

Effect of Temperature on Enthalpy of Vaporization

109.0 0.20

180. 64.0

8.9

NO

Table 14.1: Phase Properties of Selected Elements and Compounds

Phase properties of selected elements and compounds ^a													
r nase prop	$\overline{C}_P(s)$ $(\operatorname{cal/K} \operatorname{mol})$	$\rho(s)$ (g/cm^3)	T _f (K)	$\Delta H_{\mathrm{fus}}^{\circ}$ $(\mathbf{kcal/mol})$	$\overline{C}_P(l)$ (cal/K mol)	$\rho(l)$ (g/cm ³)	Т _ь (К)	$\Delta H_{ m vap}^{\circ}$ (kcal/mol)	$\overline{C}_P(g)$ (cal/K mol)	T ₃ (K)	P ₃ (atm)	Т _с (К)	P _c (atm)
Не	***	0.198			3.9	0.147	4.2	0.02	5.0	2.2^{b}	0.050^{b}	5.2	2.24
Ne	6.5	1.43	24.6	0.08	8.7	1.25	27.1	0.43	5.0	24.6	0.43	44.4	27.2
Ar	8.4	1.62	83.8	0.27	10.7	1.40	87.3	1.61	5.0	83.8	0.68	150.9	48.3
Kr	8.6	2.79	115.8	0.38	11.1	2.44	119.9	2.17	5.0	115.8	0.72	209.4	54.3
Xe	8.5	3.39	161.4	0.52	11.0	2.97	165.1	3.02	5.0	161.4	0.81	289.7	57.6
H ₂	1.4	0.081	13.8	0.03	4.6	0.070	20.3	0.22	6.9	13.8	0.069	33.0	12.8
F ₂	17.3	1.3	53.5	0.12	13.7	1.108	85.0	1.62	7.5	53.5	0.0022	144.1	51.0
Cl ₂	13.4	1.9	172.2	1.53	15.6	1.367	238.6	4.86	8.1	172.	0.014	416.9	78.9
Br ₂	11.2	3.4	265.9	2.52	18.1	3.119	331.9	7.07	8.6	265.6	0.057	588.	102.0
I_2	13.0	4.93	386.7	3.77	19.4	4.0	457.5	10.03	8.8	386.7	0.12	819.	
HF			189.8	0.26	14.6	0.987	293.	6.19	7.0	189.	0.004	461.	63.9
HCI	12.1		159.0	0.33	14.4	1.187	188.	3.86	7.0	159.3	0.14	324.7	82.0
HBr	11.4		184.7	0.48	15.5	2.77	206.8	4.44	7.0	185.	0.29	363.2	84.4
HI	11.4		222.4	0.77	15.3	2.85	237.6	4.98	7.0	219.3	0.42	424.	82.0
O_2	11.0	1.36	54.4	0.11	13.0	1.14	90.2	1.63	7.0	54.4	0.0015	154.6	49.8
O_3			80.3			1.614	161.8	3.37	9.4	80.	$6. \times 10^{-6}$	261.1	55.0
S _(rhomb)	5.4	2.07	388.4	0.41	7.3	1.82	717.8	4.42	5.7	393.	0.0006	1314.	204.2
SO ₂			197.6	0.54	20.8	1.435	263.1	5.96	9.5	197.7	0.017	430.8	77.8
SO_3			290.0	1.90	65.0	1.88	317.9	9.72	12.1	290.0	0.21		
H ₂ O	9.0	0.917	273.15	1.436	18.0	1.000	373.15	9.716	8.6	273.16	0.0060	647.1	217.7
H ₂ S		***	187.6	5.22	16.2	0.96	213.6	4.67	8.2	185.3	0.19	373.2	88.2
H ₂ Se			207.4			2.12	231.9	4.71	***			411.	88.0
H ₂ Te			224.	1.67		2.57	271.	4.59					
N_2	11.0	1.027	63.2	0.17	13.8	0.804	77.4	1.33	7.0	63.2	0.125	126.2	33.5
P _(white)	5.7	2.69	317.3	0.16		1.745	550.	2.96	16.1			994.	
N ₂ O	****		182.3	1.56	18.5	1.226	184.7	3.95	9.2	182.3	0.87	309.6	71.6

8.7 ... 109.5 0.55 15.0 1.269 121.4 3.31